Internal
problem
ID
[9137]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 02:23:09 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2/x^2*y(x) = x*exp(-x^(1/2)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2/x^2*y[x] == x*Exp[-x^(1/2)]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*exp(-sqrt(x)) + Derivative(y(x), (x, 2)) - 2*y(x)/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)