58.1.19 problem 19

Internal problem ID [9090]
Book : Second order enumerated odes
Section : section 1
Problem number : 19
Date solved : Sunday, March 30, 2025 at 02:06:45 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} {y^{\prime \prime }}^{2}+y^{\prime }&=x \end{align*}

Maple. Time used: 0.334 (sec). Leaf size: 122
ode:=diff(diff(y(x),x),x)^2+diff(y(x),x) = x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \int \left (-{\mathrm e}^{2 \operatorname {RootOf}\left (\textit {\_Z} -x -2 \,{\mathrm e}^{\textit {\_Z}}+2+c_1 -\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}+2 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z} -x -2 \,{\mathrm e}^{\textit {\_Z}}+2+c_1 -\ln \left ({\mathrm e}^{\textit {\_Z}} \left ({\mathrm e}^{\textit {\_Z}}-2\right )^{2}\right )\right )}+x \right )d x -x +c_2 \\ y &= \frac {2 \operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-1-\frac {x}{2}}\right )^{3}}{3}+3 \operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-1-\frac {x}{2}}\right )^{2}+4 \operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-1-\frac {x}{2}}\right )+\frac {x^{2}}{2}-x +c_2 \\ \end{align*}
Mathematica. Time used: 17.332 (sec). Leaf size: 172
ode=(D[y[x],{x,2}])^2+D[y[x],x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {2}{3} W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^3+3 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right ){}^2+4 W\left (e^{-\frac {x}{2}-1-\frac {c_1}{2}}\right )+\frac {x^2}{2}-x+c_2 \\ y(x)\to \frac {2}{3} W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^3+3 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right ){}^2+4 W\left (-e^{\frac {1}{2} (-x-2+c_1)}\right )+\frac {x^2}{2}-x+c_2 \\ y(x)\to \frac {x^2}{2}-x+c_2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), x) + Derivative(y(x), (x, 2))**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : multiple generators [log(sqrt(-_X0 + x) + 1), sqrt(-_X0 + x)] 
No algorithms are implemented to solve equation C1 + x - 2*sqrt(-_X0 + x) + 2*log(sqrt(-_X0 + x) + 1)