58.1.6 problem 6

Internal problem ID [9077]
Book : Second order enumerated odes
Section : section 1
Problem number : 6
Date solved : Sunday, March 30, 2025 at 02:06:21 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} a {y^{\prime \prime }}^{n}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 9
ode:=a*diff(diff(y(x),x),x)^n = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \]
Mathematica. Time used: 0.005 (sec). Leaf size: 24
ode=a*(D[y[x],{x,2}])^n==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} 0^{\frac {1}{n}} x^2+c_2 x+c_1 \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), (x, 2))**n,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational