58.1.4 problem 4

Internal problem ID [9075]
Book : Second order enumerated odes
Section : section 1
Problem number : 4
Date solved : Sunday, March 30, 2025 at 02:06:17 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} a y^{\prime \prime }&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 9
ode:=a*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 12
ode=a*D[y[x],{x,2}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 x+c_1 \]
Sympy. Time used: 0.044 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x \]