57.1.55 problem 55

Internal problem ID [9039]
Book : First order enumerated odes
Section : section 1
Problem number : 55
Date solved : Sunday, March 30, 2025 at 01:59:58 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{y x} \end{align*}

Maple. Time used: 0.040 (sec). Leaf size: 51
ode:=diff(y(x),x)^2 = 1/x/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {y \sqrt {y x}-c_1 \sqrt {x}-3 x}{\sqrt {x}} &= 0 \\ \frac {y \sqrt {y x}-c_1 \sqrt {x}+3 x}{\sqrt {x}} &= 0 \\ \end{align*}
Mathematica. Time used: 3.346 (sec). Leaf size: 53
ode=(D[y[x],x])^2==1/(y[x]*x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \left (\frac {3}{2}\right )^{2/3} \left (-2 \sqrt {x}+c_1\right ){}^{2/3} \\ y(x)\to \left (\frac {3}{2}\right )^{2/3} \left (2 \sqrt {x}+c_1\right ){}^{2/3} \\ \end{align*}
Sympy. Time used: 52.023 (sec). Leaf size: 374
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 - 1/(x*y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}, \ y{\left (x \right )} = \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}, \ y{\left (x \right )} = \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}\right ] \]