56.5.19 problem 19

Internal problem ID [8980]
Book : Own collection of miscellaneous problems
Section : section 5.0
Problem number : 19
Date solved : Sunday, March 30, 2025 at 01:57:50 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} y^{\prime }&=\frac {y}{2 y \ln \left (y\right )+y-x} \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 19
ode:=diff(y(x),x) = y(x)/(2*y(x)*ln(y(x))+y(x)-x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z} \,{\mathrm e}^{2 \textit {\_Z}}-x \,{\mathrm e}^{\textit {\_Z}}+c_1 \right )} \]
Mathematica. Time used: 0.193 (sec). Leaf size: 19
ode=D[y[x],x]==y[x]/(2*y[x]*Log[y[x]]+y[x]-x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x=y(x) \log (y(x))+\frac {c_1}{y(x)},y(x)\right ] \]
Sympy. Time used: 0.819 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - y(x)/(-x + 2*y(x)*log(y(x)) + y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} + x y{\left (x \right )} - y^{2}{\left (x \right )} \log {\left (y{\left (x \right )} \right )} = 0 \]