|
ODE type |
Count |
MMA |
Maple |
Sympy |
|
[_quadrature] |
\(1139\) |
98.24 |
99.74 |
90.34 |
|
[[_2nd_order, _quadrature]] |
\(90\) |
98.89 |
98.89 |
96.67 |
|
[[_linear, ‘class A‘]] |
\(372\) |
100.00 |
99.46 |
94.35 |
|
[_separable] |
\(1535\) |
99.02 |
99.35 |
92.31 |
|
[[_homogeneous, ‘class C‘], _dAlembert] |
\(106\) |
91.51 |
100.00 |
73.58 |
|
[_Riccati] |
\(338\) |
68.05 |
73.37 |
4.14 |
|
[[_Riccati, _special]] |
\(36\) |
100.00 |
100.00 |
5.56 |
|
[[_homogeneous, ‘class G‘]] |
\(86\) |
94.19 |
95.35 |
43.02 |
|
[_linear] |
\(875\) |
99.66 |
99.54 |
92.80 |
|
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(39\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
\(134\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class A‘], _dAlembert] |
\(175\) |
98.86 |
100.00 |
63.43 |
|
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(117\) |
100.00 |
99.15 |
76.07 |
|
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(81\) |
100.00 |
100.00 |
77.78 |
|
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
\(275\) |
98.55 |
100.00 |
76.00 |
|
[[_homogeneous, ‘class C‘], _Riccati] |
\(31\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
\(7\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
\(97\) |
100.00 |
100.00 |
97.94 |
|
[_Bernoulli] |
\(148\) |
100.00 |
100.00 |
87.16 |
|
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
\(13\) |
100.00 |
100.00 |
100.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
\(50\) |
100.00 |
100.00 |
40.00 |
|
[‘y=_G(x,y”)‘] |
\(165\) |
62.42 |
58.79 |
19.39 |
|
[[_1st_order, _with_linear_symmetries]] |
\(124\) |
91.94 |
98.39 |
28.23 |
|
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
\(46\) |
100.00 |
100.00 |
32.61 |
|
[_exact, _rational] |
\(57\) |
96.49 |
100.00 |
0.00 |
|
[_exact] |
\(121\) |
95.04 |
98.35 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
\(9\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _missing_y]] |
\(257\) |
98.05 |
98.83 |
86.77 |
|
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(17\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _missing_x]] |
\(1137\) |
96.48 |
97.10 |
90.24 |
|
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
\(15\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
\(3\) |
100.00 |
100.00 |
66.67 |
|
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
\(15\) |
93.33 |
100.00 |
0.00 |
|
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
\(103\) |
94.17 |
97.09 |
29.13 |
|
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(20\) |
65.00 |
100.00 |
0.00 |
|
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(47\) |
100.00 |
97.87 |
0.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(90\) |
98.89 |
98.89 |
44.44 |
|
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(201\) |
98.51 |
98.51 |
77.61 |
|
[[_1st_order, _with_linear_symmetries], _Clairaut] |
\(85\) |
100.00 |
100.00 |
58.82 |
|
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(5\) |
100.00 |
100.00 |
60.00 |
|
[[_homogeneous, ‘class G‘], _exact, _rational] |
\(12\) |
83.33 |
100.00 |
33.33 |
|
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(159\) |
99.37 |
99.37 |
98.74 |
|
[[_Emden, _Fowler]] |
\(405\) |
100.00 |
97.78 |
90.86 |
|
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
\(12\) |
8.33 |
25.00 |
0.00 |
|
[[_2nd_order, _exact, _linear, _homogeneous]] |
\(295\) |
99.32 |
98.31 |
78.64 |
|
[[_3rd_order, _missing_x]] |
\(255\) |
100.00 |
100.00 |
99.22 |
|
[[_3rd_order, _with_linear_symmetries]] |
\(195\) |
94.87 |
95.90 |
60.51 |
|
[[_2nd_order, _with_linear_symmetries]] |
\(3221\) |
95.68 |
96.27 |
54.58 |
|
[_Gegenbauer] |
\(91\) |
100.00 |
100.00 |
47.25 |
|
[[_high_order, _missing_x]] |
\(283\) |
100.00 |
100.00 |
99.29 |
|
[[_3rd_order, _missing_y]] |
\(142\) |
100.00 |
100.00 |
89.44 |
|
[[_3rd_order, _exact, _linear, _homogeneous]] |
\(25\) |
96.00 |
96.00 |
88.00 |
|
[[_2nd_order, _linear, _nonhomogeneous]] |
\(1509\) |
98.87 |
98.48 |
80.58 |
|
[[_high_order, _linear, _nonhomogeneous]] |
\(133\) |
98.50 |
99.25 |
94.74 |
|
[[_high_order, _missing_y]] |
\(76\) |
98.68 |
97.37 |
92.11 |
|
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
\(106\) |
100.00 |
100.00 |
57.55 |
|
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(104\) |
92.31 |
97.12 |
25.96 |
|
[_Lienard] |
\(73\) |
100.00 |
100.00 |
86.30 |
|
[_Bessel] |
\(26\) |
100.00 |
96.15 |
73.08 |
|
[_Jacobi] |
\(41\) |
100.00 |
100.00 |
41.46 |
|
[_Laguerre] |
\(51\) |
100.00 |
100.00 |
49.02 |
|
system_of_ODEs |
\(1409\) |
96.74 |
97.09 |
91.48 |
|
[[_high_order, _with_linear_symmetries]] |
\(72\) |
84.72 |
83.33 |
45.83 |
|
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
\(34\) |
100.00 |
100.00 |
91.18 |
|
[‘x=_G(y,y”)‘] |
\(16\) |
62.50 |
62.50 |
12.50 |
|
[[_Abel, ‘2nd type‘, ‘class B‘]] |
\(16\) |
31.25 |
43.75 |
0.00 |
|
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(15\) |
100.00 |
100.00 |
13.33 |
|
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
\(36\) |
97.22 |
100.00 |
86.11 |
|
[[_homogeneous, ‘class D‘], _rational] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_exponential_symmetries]] |
\(12\) |
100.00 |
100.00 |
75.00 |
|
[_rational] |
\(133\) |
84.96 |
73.68 |
3.76 |
|
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(137\) |
29.93 |
51.82 |
1.46 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(4\) |
100.00 |
100.00 |
25.00 |
|
[NONE] |
\(72\) |
47.22 |
40.28 |
1.39 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
\(35\) |
100.00 |
97.14 |
88.57 |
|
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(70\) |
98.57 |
100.00 |
71.43 |
|
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(27\) |
100.00 |
100.00 |
51.85 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
\(60\) |
100.00 |
100.00 |
20.00 |
|
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
\(5\) |
100.00 |
100.00 |
100.00 |
|
[[_Abel, ‘2nd type‘, ‘class A‘]] |
\(33\) |
15.15 |
36.36 |
0.00 |
|
[_rational, _Bernoulli] |
\(58\) |
100.00 |
100.00 |
94.83 |
|
[[_homogeneous, ‘class A‘]] |
\(7\) |
100.00 |
100.00 |
57.14 |
|
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
\(22\) |
100.00 |
100.00 |
95.45 |
|
[[_1st_order, _with_linear_symmetries], _Riccati] |
\(10\) |
100.00 |
100.00 |
100.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(2\) |
100.00 |
100.00 |
50.00 |
|
[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(18\) |
100.00 |
100.00 |
0.00 |
|
[_exact, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(6\) |
100.00 |
100.00 |
0.00 |
|
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(14\) |
100.00 |
100.00 |
14.29 |
|
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(4\) |
100.00 |
100.00 |
25.00 |
|
[_exact, _Bernoulli] |
\(9\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
\(10\) |
100.00 |
100.00 |
100.00 |
|
[_rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
\(11\) |
90.91 |
90.91 |
9.09 |
|
[[_homogeneous, ‘class G‘], _rational] |
\(128\) |
99.22 |
100.00 |
58.59 |
|
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
\(14\) |
100.00 |
100.00 |
78.57 |
|
[_rational, _Riccati] |
\(103\) |
95.15 |
97.09 |
9.71 |
|
[[_3rd_order, _linear, _nonhomogeneous]] |
\(129\) |
96.90 |
96.90 |
89.92 |
|
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
\(17\) |
100.00 |
100.00 |
88.24 |
|
[[_high_order, _exact, _linear, _nonhomogeneous]] |
\(9\) |
88.89 |
88.89 |
88.89 |
|
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(39\) |
100.00 |
100.00 |
89.74 |
|
[_exact, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(3\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[_Abel] |
\(30\) |
66.67 |
66.67 |
3.33 |
|
[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(5\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[_rational, _Abel] |
\(21\) |
95.24 |
100.00 |
4.76 |
|
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
\(3\) |
100.00 |
100.00 |
66.67 |
|
[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(5\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(9\) |
100.00 |
100.00 |
100.00 |
|
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
\(15\) |
100.00 |
100.00 |
86.67 |
|
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(6\) |
100.00 |
100.00 |
66.67 |
|
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
\(41\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class D‘], _Bernoulli] |
\(7\) |
100.00 |
100.00 |
100.00 |
|
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
\(11\) |
100.00 |
100.00 |
81.82 |
|
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
\(7\) |
100.00 |
100.00 |
71.43 |
|
[[_high_order, _quadrature]] |
\(16\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
\(33\) |
100.00 |
100.00 |
45.45 |
|
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
\(37\) |
97.30 |
91.89 |
78.38 |
|
[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]] |
\(7\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
\(17\) |
100.00 |
100.00 |
52.94 |
|
[_dAlembert] |
\(34\) |
97.06 |
97.06 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], _dAlembert] |
\(72\) |
84.72 |
100.00 |
20.83 |
|
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
\(13\) |
100.00 |
100.00 |
15.38 |
|
[[_homogeneous, ‘class G‘], _Clairaut] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
\(35\) |
97.14 |
100.00 |
0.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
\(16\) |
100.00 |
100.00 |
0.00 |
|
[[_3rd_order, _exact, _nonlinear]] |
\(3\) |
66.67 |
66.67 |
0.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(7\) |
100.00 |
100.00 |
100.00 |
|
[[_3rd_order, _quadrature]] |
\(17\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class G‘], _exact] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
\(13\) |
100.00 |
100.00 |
100.00 |
|
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[_erf] |
\(4\) |
100.00 |
100.00 |
50.00 |
|
[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
\(2\) |
100.00 |
100.00 |
50.00 |
|
[[_homogeneous, ‘class D‘]] |
\(13\) |
100.00 |
100.00 |
7.69 |
|
[_exact, _rational, _Riccati] |
\(5\) |
100.00 |
100.00 |
100.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(8\) |
100.00 |
100.00 |
25.00 |
|
[[_1st_order, _with_linear_symmetries], _rational] |
\(28\) |
100.00 |
100.00 |
35.71 |
|
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
\(23\) |
100.00 |
100.00 |
69.57 |
|
[[_1st_order, _with_linear_symmetries], _exact] |
\(5\) |
100.00 |
100.00 |
60.00 |
|
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
\(7\) |
100.00 |
100.00 |
100.00 |
|
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(2\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(2\) |
100.00 |
100.00 |
50.00 |
|
[_rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(39\) |
28.21 |
46.15 |
2.56 |
|
[[_homogeneous, ‘class G‘], _dAlembert] |
\(7\) |
100.00 |
100.00 |
57.14 |
|
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli] |
\(5\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class C‘], _rational] |
\(10\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], _Chini] |
\(3\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class G‘], _Abel] |
\(4\) |
100.00 |
100.00 |
75.00 |
|
[[_homogeneous, ‘class G‘], _Chini] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[_Chini] |
\(4\) |
0.00 |
0.00 |
0.00 |
|
[_rational, [_Riccati, _special]] |
\(10\) |
100.00 |
100.00 |
50.00 |
|
[[_1st_order, _with_linear_symmetries], _rational, _Riccati] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class D‘], _Riccati] |
\(21\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
\(5\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class G‘], _Riccati] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(6\) |
100.00 |
100.00 |
66.67 |
|
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
\(6\) |
100.00 |
100.00 |
83.33 |
|
[_exact, _rational, _Bernoulli] |
\(4\) |
75.00 |
75.00 |
75.00 |
|
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
\(5\) |
100.00 |
100.00 |
80.00 |
|
[[_Abel, ‘2nd type‘, ‘class C‘]] |
\(6\) |
83.33 |
83.33 |
0.00 |
|
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]] |
\(4\) |
100.00 |
100.00 |
100.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(22\) |
100.00 |
100.00 |
13.64 |
|
unknown |
\(6\) |
83.33 |
66.67 |
16.67 |
|
[_rational, _dAlembert] |
\(13\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
\(10\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
\(7\) |
100.00 |
100.00 |
0.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
\(17\) |
100.00 |
100.00 |
5.88 |
|
[_Clairaut] |
\(8\) |
100.00 |
87.50 |
0.00 |
|
[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(13\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
\(4\) |
50.00 |
100.00 |
0.00 |
|
[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(9\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(6\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class G‘], _rational, _Abel] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_elliptic, _class_I]] |
\(2\) |
100.00 |
100.00 |
50.00 |
|
[[_elliptic, _class_II]] |
\(2\) |
100.00 |
100.00 |
50.00 |
|
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[_Hermite] |
\(16\) |
100.00 |
100.00 |
43.75 |
|
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
\(3\) |
100.00 |
100.00 |
33.33 |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
\(4\) |
75.00 |
75.00 |
0.00 |
|
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(6\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
\(39\) |
100.00 |
94.87 |
33.33 |
|
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
\(8\) |
100.00 |
87.50 |
37.50 |
|
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(4\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
\(2\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(8\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[[_Bessel, _modified]] |
\(2\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(2\) |
50.00 |
50.00 |
0.00 |
|
[_Liouville, [_2nd_order, _reducible, _mu_xy]] |
\(3\) |
100.00 |
100.00 |
0.00 |
|
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
\(7\) |
100.00 |
100.00 |
0.00 |
|
[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(2\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(7\) |
100.00 |
100.00 |
57.14 |
|
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
\(8\) |
100.00 |
100.00 |
50.00 |
|
[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], _Abel] |
\(13\) |
100.00 |
100.00 |
30.77 |
|
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
\(7\) |
100.00 |
100.00 |
71.43 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class D‘], _rational, _Abel] |
\(3\) |
100.00 |
100.00 |
33.33 |
|
[[_homogeneous, ‘class C‘], _rational, _Abel] |
\(3\) |
100.00 |
100.00 |
0.00 |
|
[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
\(3\) |
100.00 |
100.00 |
33.33 |
|
[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class C‘], _Abel] |
\(3\) |
100.00 |
100.00 |
0.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(6\) |
100.00 |
100.00 |
100.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
\(5\) |
100.00 |
100.00 |
0.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel] |
\(10\) |
100.00 |
100.00 |
30.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
\(2\) |
100.00 |
100.00 |
100.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], _rational, _Abel] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[_Titchmarsh] |
\(2\) |
50.00 |
50.00 |
50.00 |
|
[_ellipsoidal] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[_Halm] |
\(4\) |
100.00 |
100.00 |
100.00 |
|
[[_3rd_order, _fully, _exact, _linear]] |
\(16\) |
100.00 |
100.00 |
18.75 |
|
[[_high_order, _fully, _exact, _linear]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_Painleve, ‘1st‘]] |
\(1\) |
0.00 |
0.00 |
0.00 |
|
[[_Painleve, ‘2nd‘]] |
\(1\) |
0.00 |
0.00 |
0.00 |
|
[[_2nd_order, _with_potential_symmetries]] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
\(6\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _reducible, _mu_xy]] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(2\) |
100.00 |
50.00 |
0.00 |
|
[[_Painleve, ‘4th‘]] |
\(1\) |
0.00 |
0.00 |
0.00 |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
\(4\) |
100.00 |
100.00 |
0.00 |
|
[[_Painleve, ‘3rd‘]] |
\(1\) |
0.00 |
0.00 |
0.00 |
|
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_Painleve, ‘5th‘]] |
\(1\) |
0.00 |
0.00 |
0.00 |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
\(3\) |
0.00 |
0.00 |
0.00 |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]] |
\(3\) |
0.00 |
0.00 |
0.00 |
|
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]] |
\(7\) |
28.57 |
28.57 |
0.00 |
|
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(5\) |
100.00 |
100.00 |
40.00 |
|
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]] |
\(3\) |
66.67 |
66.67 |
0.00 |
|
[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]] |
\(3\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]] |
\(2\) |
100.00 |
50.00 |
0.00 |
|
[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]] |
\(2\) |
0.00 |
0.00 |
0.00 |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_1st_order, _with_exponential_symmetries], _exact] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
\(2\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_high_order, _exact, _linear, _homogeneous]] |
\(3\) |
100.00 |
100.00 |
100.00 |
|
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_2nd_order, _missing_x], _Van_der_Pol] |
\(2\) |
50.00 |
50.00 |
0.00 |
|
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[[_homogeneous, ‘class D‘], _exact, _rational] |
\(1\) |
100.00 |
100.00 |
0.00 |
|
[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]] |
\(1\) |
100.00 |
100.00 |
100.00 |
|
[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]] |
\(1\) |
0.00 |
100.00 |
0.00 |
|
[[_2nd_order, _missing_x], [_Emden, _modified]] |
\(1\) |
0.00 |
0.00 |
0.00 |
|
[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]] |
\(1\) |
0.00 |
100.00 |
0.00 |
|
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert] |
\(2\) |
0.00 |
100.00 |
0.00 |
|
[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]] |
\(2\) |
100.00 |
100.00 |
0.00 |
|
[[_3rd_order, _reducible, _mu_y2]] |
\(1\) |
100.00 |
100.00 |
100.00 |