3.1.1 Summary table

Table 3.1: Summary table of CAS showing percentage solved per Maple ode type

ODE type

Count

MMA

Maple

Sympy

[_quadrature]

\(1139\)

98.24

99.74

90.34

[[_2nd_order, _quadrature]]

\(90\)

98.89

98.89

96.67

[[_linear, ‘class A‘]]

\(372\)

100.00

99.46

94.35

[_separable]

\(1535\)

99.02

99.35

92.31

[[_homogeneous, ‘class C‘], _dAlembert]

\(106\)

91.51

100.00

73.58

[_Riccati]

\(338\)

68.05

73.37

4.14

[[_Riccati, _special]]

\(36\)

100.00

100.00

5.56

[[_homogeneous, ‘class G‘]]

\(86\)

94.19

95.35

43.02

[_linear]

\(875\)

99.66

99.54

92.80

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(39\)

100.00

100.00

100.00

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

\(134\)

100.00

100.00

100.00

[[_homogeneous, ‘class A‘], _dAlembert]

\(175\)

98.86

100.00

63.43

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(117\)

100.00

99.15

76.07

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(81\)

100.00

100.00

77.78

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

\(275\)

98.55

100.00

76.00

[[_homogeneous, ‘class C‘], _Riccati]

\(31\)

100.00

100.00

100.00

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

\(7\)

100.00

100.00

100.00

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

\(97\)

100.00

100.00

97.94

[_Bernoulli]

\(148\)

100.00

100.00

87.16

[[_1st_order, _with_linear_symmetries], _Bernoulli]

\(13\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(50\)

100.00

100.00

40.00

[‘y=_G(x,y”)‘]

\(165\)

62.42

58.79

19.39

[[_1st_order, _with_linear_symmetries]]

\(124\)

91.94

98.39

28.23

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

\(46\)

100.00

100.00

32.61

[_exact, _rational]

\(57\)

96.49

100.00

0.00

[_exact]

\(121\)

95.04

98.35

0.00

[[_1st_order, _with_linear_symmetries], _exact, _rational]

\(9\)

100.00

100.00

0.00

[[_2nd_order, _missing_y]]

\(257\)

98.05

98.83

86.77

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(17\)

100.00

100.00

0.00

[[_2nd_order, _missing_x]]

\(1137\)

96.48

97.10

90.24

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\(15\)

100.00

100.00

100.00

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

\(3\)

100.00

100.00

66.67

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(15\)

93.33

100.00

0.00

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\(103\)

94.17

97.09

29.13

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(20\)

65.00

100.00

0.00

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(47\)

100.00

97.87

0.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(90\)

98.89

98.89

44.44

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(201\)

98.51

98.51

77.61

[[_1st_order, _with_linear_symmetries], _Clairaut]

\(85\)

100.00

100.00

58.82

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(5\)

100.00

100.00

60.00

[[_homogeneous, ‘class G‘], _exact, _rational]

\(12\)

83.33

100.00

33.33

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(159\)

99.37

99.37

98.74

[[_Emden, _Fowler]]

\(405\)

100.00

97.78

90.86

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

\(12\)

8.33

25.00

0.00

[[_2nd_order, _exact, _linear, _homogeneous]]

\(295\)

99.32

98.31

78.64

[[_3rd_order, _missing_x]]

\(255\)

100.00

100.00

99.22

[[_3rd_order, _with_linear_symmetries]]

\(195\)

94.87

95.90

60.51

[[_2nd_order, _with_linear_symmetries]]

\(3221\)

95.68

96.27

54.58

[_Gegenbauer]

\(91\)

100.00

100.00

47.25

[[_high_order, _missing_x]]

\(283\)

100.00

100.00

99.29

[[_3rd_order, _missing_y]]

\(142\)

100.00

100.00

89.44

[[_3rd_order, _exact, _linear, _homogeneous]]

\(25\)

96.00

96.00

88.00

[[_2nd_order, _linear, _nonhomogeneous]]

\(1509\)

98.87

98.48

80.58

[[_high_order, _linear, _nonhomogeneous]]

\(133\)

98.50

99.25

94.74

[[_high_order, _missing_y]]

\(76\)

98.68

97.37

92.11

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

\(106\)

100.00

100.00

57.55

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(104\)

92.31

97.12

25.96

[_Lienard]

\(73\)

100.00

100.00

86.30

[_Bessel]

\(26\)

100.00

96.15

73.08

[_Jacobi]

\(41\)

100.00

100.00

41.46

[_Laguerre]

\(51\)

100.00

100.00

49.02

system_of_ODEs

\(1409\)

96.74

97.09

91.48

[[_high_order, _with_linear_symmetries]]

\(72\)

84.72

83.33

45.83

[[_homogeneous, ‘class A‘], _rational, _Riccati]

\(34\)

100.00

100.00

91.18

[‘x=_G(y,y”)‘]

\(16\)

62.50

62.50

12.50

[[_Abel, ‘2nd type‘, ‘class B‘]]

\(16\)

31.25

43.75

0.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(15\)

100.00

100.00

13.33

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

\(36\)

97.22

100.00

86.11

[[_homogeneous, ‘class D‘], _rational]

\(4\)

100.00

100.00

0.00

[[_1st_order, _with_exponential_symmetries]]

\(12\)

100.00

100.00

75.00

[_rational]

\(133\)

84.96

73.68

3.76

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(137\)

29.93

51.82

1.46

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(4\)

100.00

100.00

25.00

[NONE]

\(72\)

47.22

40.28

1.39

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

\(35\)

100.00

97.14

88.57

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(70\)

98.57

100.00

71.43

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(27\)

100.00

100.00

51.85

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(60\)

100.00

100.00

20.00

[[_homogeneous, ‘class C‘], _rational, _Riccati]

\(5\)

100.00

100.00

100.00

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(33\)

15.15

36.36

0.00

[_rational, _Bernoulli]

\(58\)

100.00

100.00

94.83

[[_homogeneous, ‘class A‘]]

\(7\)

100.00

100.00

57.14

[[_homogeneous, ‘class G‘], _rational, _Riccati]

\(22\)

100.00

100.00

95.45

[[_1st_order, _with_linear_symmetries], _Riccati]

\(10\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

\(1\)

100.00

100.00

0.00

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(2\)

100.00

100.00

50.00

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(18\)

100.00

100.00

0.00

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

\(6\)

100.00

100.00

0.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(14\)

100.00

100.00

14.29

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(4\)

100.00

100.00

25.00

[_exact, _Bernoulli]

\(9\)

100.00

100.00

100.00

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

\(10\)

100.00

100.00

100.00

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(11\)

90.91

90.91

9.09

[[_homogeneous, ‘class G‘], _rational]

\(128\)

99.22

100.00

58.59

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(2\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(14\)

100.00

100.00

78.57

[_rational, _Riccati]

\(103\)

95.15

97.09

9.71

[[_3rd_order, _linear, _nonhomogeneous]]

\(129\)

96.90

96.90

89.92

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

\(17\)

100.00

100.00

88.24

[[_high_order, _exact, _linear, _nonhomogeneous]]

\(9\)

88.89

88.89

88.89

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(39\)

100.00

100.00

89.74

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

\(3\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

\(3\)

100.00

100.00

100.00

[_Abel]

\(30\)

66.67

66.67

3.33

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(5\)

100.00

100.00

100.00

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

\(4\)

100.00

100.00

0.00

[_rational, _Abel]

\(21\)

95.24

100.00

4.76

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

\(3\)

100.00

100.00

66.67

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(5\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(9\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

\(15\)

100.00

100.00

86.67

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(6\)

100.00

100.00

66.67

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

\(41\)

100.00

100.00

100.00

[[_homogeneous, ‘class D‘], _Bernoulli]

\(7\)

100.00

100.00

100.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

\(11\)

100.00

100.00

81.82

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

\(7\)

100.00

100.00

71.43

[[_high_order, _quadrature]]

\(16\)

100.00

100.00

100.00

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\(33\)

100.00

100.00

45.45

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\(37\)

97.30

91.89

78.38

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(7\)

100.00

100.00

0.00

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

\(17\)

100.00

100.00

52.94

[_dAlembert]

\(34\)

97.06

97.06

0.00

[[_1st_order, _with_linear_symmetries], _dAlembert]

\(72\)

84.72

100.00

20.83

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

\(13\)

100.00

100.00

15.38

[[_homogeneous, ‘class G‘], _Clairaut]

\(3\)

100.00

100.00

100.00

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

\(35\)

97.14

100.00

0.00

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(16\)

100.00

100.00

0.00

[[_3rd_order, _exact, _nonlinear]]

\(3\)

66.67

66.67

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(7\)

100.00

100.00

100.00

[[_3rd_order, _quadrature]]

\(17\)

100.00

100.00

100.00

[[_homogeneous, ‘class G‘], _exact]

\(3\)

100.00

100.00

100.00

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

\(13\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(1\)

100.00

100.00

0.00

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

\(1\)

100.00

100.00

100.00

[_erf]

\(4\)

100.00

100.00

50.00

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(2\)

100.00

100.00

50.00

[[_homogeneous, ‘class D‘]]

\(13\)

100.00

100.00

7.69

[_exact, _rational, _Riccati]

\(5\)

100.00

100.00

100.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(8\)

100.00

100.00

25.00

[[_1st_order, _with_linear_symmetries], _rational]

\(28\)

100.00

100.00

35.71

[[_homogeneous, ‘class D‘], _rational, _Riccati]

\(23\)

100.00

100.00

69.57

[[_1st_order, _with_linear_symmetries], _exact]

\(5\)

100.00

100.00

60.00

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

\(7\)

100.00

100.00

100.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(2\)

100.00

100.00

100.00

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(2\)

100.00

100.00

50.00

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(39\)

28.21

46.15

2.56

[[_homogeneous, ‘class G‘], _dAlembert]

\(7\)

100.00

100.00

57.14

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

\(5\)

100.00

100.00

100.00

[[_homogeneous, ‘class C‘], _rational]

\(10\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], _Chini]

\(3\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _Abel]

\(4\)

100.00

100.00

75.00

[[_homogeneous, ‘class G‘], _Chini]

\(4\)

100.00

100.00

0.00

[_Chini]

\(4\)

0.00

0.00

0.00

[_rational, [_Riccati, _special]]

\(10\)

100.00

100.00

50.00

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

\(3\)

100.00

100.00

100.00

[[_homogeneous, ‘class D‘], _Riccati]

\(21\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

\(5\)

100.00

100.00

100.00

[[_homogeneous, ‘class G‘], _Riccati]

\(4\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(6\)

100.00

100.00

66.67

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

\(6\)

100.00

100.00

83.33

[_exact, _rational, _Bernoulli]

\(4\)

75.00

75.00

75.00

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(5\)

100.00

100.00

80.00

[[_Abel, ‘2nd type‘, ‘class C‘]]

\(6\)

83.33

83.33

0.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(4\)

100.00

100.00

100.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(22\)

100.00

100.00

13.64

unknown

\(6\)

83.33

66.67

16.67

[_rational, _dAlembert]

\(13\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

\(10\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

\(7\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(17\)

100.00

100.00

5.88

[_Clairaut]

\(8\)

100.00

87.50

0.00

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

\(1\)

100.00

100.00

100.00

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(13\)

100.00

100.00

0.00

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

\(4\)

50.00

100.00

0.00

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(9\)

100.00

100.00

0.00

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(6\)

100.00

100.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(4\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], _rational, _Abel]

\(2\)

100.00

100.00

0.00

[[_elliptic, _class_I]]

\(2\)

100.00

100.00

50.00

[[_elliptic, _class_II]]

\(2\)

100.00

100.00

50.00

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

\(1\)

100.00

100.00

0.00

[_Hermite]

\(16\)

100.00

100.00

43.75

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

\(3\)

100.00

100.00

33.33

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(4\)

100.00

100.00

0.00

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

\(4\)

75.00

75.00

0.00

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(1\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(3\)

100.00

100.00

100.00

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(1\)

100.00

100.00

100.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(6\)

100.00

100.00

0.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(39\)

100.00

94.87

33.33

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(8\)

100.00

87.50

37.50

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

\(3\)

100.00

100.00

100.00

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

\(3\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(4\)

100.00

100.00

100.00

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

\(2\)

100.00

100.00

100.00

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(8\)

100.00

100.00

0.00

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\(3\)

100.00

100.00

100.00

[[_Bessel, _modified]]

\(2\)

100.00

100.00

100.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(2\)

50.00

50.00

0.00

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

\(3\)

100.00

100.00

0.00

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(7\)

100.00

100.00

0.00

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(2\)

100.00

100.00

0.00

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

100.00

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(2\)

100.00

100.00

100.00

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

0.00

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(1\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

\(7\)

100.00

100.00

57.14

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(8\)

100.00

100.00

50.00

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(4\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], _Abel]

\(13\)

100.00

100.00

30.77

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(7\)

100.00

100.00

71.43

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(2\)

100.00

100.00

0.00

[[_homogeneous, ‘class D‘], _rational, _Abel]

\(3\)

100.00

100.00

33.33

[[_homogeneous, ‘class C‘], _rational, _Abel]

\(3\)

100.00

100.00

0.00

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(3\)

100.00

100.00

33.33

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(1\)

100.00

100.00

0.00

[[_homogeneous, ‘class C‘], _Abel]

\(3\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(6\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

\(5\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

\(10\)

100.00

100.00

30.00

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(2\)

100.00

100.00

100.00

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

\(2\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

\(1\)

100.00

100.00

100.00

[_Titchmarsh]

\(2\)

50.00

50.00

50.00

[_ellipsoidal]

\(2\)

100.00

100.00

0.00

[_Halm]

\(4\)

100.00

100.00

100.00

[[_3rd_order, _fully, _exact, _linear]]

\(16\)

100.00

100.00

18.75

[[_high_order, _fully, _exact, _linear]]

\(1\)

100.00

100.00

0.00

[[_Painleve, ‘1st‘]]

\(1\)

0.00

0.00

0.00

[[_Painleve, ‘2nd‘]]

\(1\)

0.00

0.00

0.00

[[_2nd_order, _with_potential_symmetries]]

\(2\)

100.00

100.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(6\)

100.00

100.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(4\)

100.00

100.00

0.00

[[_2nd_order, _reducible, _mu_xy]]

\(2\)

100.00

100.00

0.00

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(2\)

100.00

50.00

0.00

[[_Painleve, ‘4th‘]]

\(1\)

0.00

0.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

\(4\)

100.00

100.00

0.00

[[_Painleve, ‘3rd‘]]

\(1\)

0.00

0.00

0.00

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

\(1\)

100.00

100.00

0.00

[[_Painleve, ‘5th‘]]

\(1\)

0.00

0.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

\(3\)

0.00

0.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

\(3\)

0.00

0.00

0.00

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

\(7\)

28.57

28.57

0.00

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(1\)

100.00

100.00

0.00

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

\(1\)

100.00

100.00

0.00

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(5\)

100.00

100.00

40.00

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

\(3\)

66.67

66.67

0.00

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

\(3\)

100.00

100.00

0.00

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

100.00

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

\(2\)

100.00

50.00

0.00

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

100.00

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

\(2\)

0.00

0.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(2\)

100.00

100.00

0.00

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

\(1\)

100.00

100.00

0.00

[[_1st_order, _with_exponential_symmetries], _exact]

\(1\)

100.00

100.00

100.00

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

\(1\)

100.00

100.00

100.00

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

\(2\)

100.00

100.00

100.00

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

\(1\)

100.00

100.00

100.00

[[_high_order, _exact, _linear, _homogeneous]]

\(3\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(1\)

100.00

100.00

100.00

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(1\)

100.00

100.00

0.00

[[_2nd_order, _missing_x], _Van_der_Pol]

\(2\)

50.00

50.00

0.00

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(1\)

100.00

100.00

0.00

[[_homogeneous, ‘class D‘], _exact, _rational]

\(1\)

100.00

100.00

0.00

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(1\)

100.00

100.00

100.00

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

\(1\)

100.00

100.00

100.00

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(1\)

0.00

100.00

0.00

[[_2nd_order, _missing_x], [_Emden, _modified]]

\(1\)

0.00

0.00

0.00

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

\(1\)

0.00

100.00

0.00

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]

\(2\)

0.00

100.00

0.00

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(2\)

100.00

100.00

0.00

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

\(2\)

100.00

100.00

0.00

[[_3rd_order, _reducible, _mu_y2]]

\(1\)

100.00

100.00

100.00