38.2.49 problem 52

Internal problem ID [8267]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Section 1.2 Initial value problems. Exercises 1.2 at page 19
Problem number : 52
Date solved : Tuesday, September 30, 2025 at 05:21:03 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=x \sqrt {y} \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&=1 \\ \end{align*}
Maple. Time used: 0.035 (sec). Leaf size: 9
ode:=diff(y(x),x) = x*y(x)^(1/2); 
ic:=[y(2) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {x^{4}}{16} \]
Mathematica. Time used: 0.076 (sec). Leaf size: 27
ode=D[y[x],x]==x*Sqrt[y[x]]; 
ic={y[2]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^4}{16}\\ y(x)&\to \frac {1}{16} \left (x^2-8\right )^2 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*sqrt(y(x)) + Derivative(y(x), x),0) 
ics = {y(2): 1} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : Initial conditions produced too many solutions for constants