38.1.8 problem 9

Internal problem ID [8169]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 9
Date solved : Tuesday, September 30, 2025 at 05:17:43 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} \sin \left (y^{\prime }\right )&=y+x \end{align*}
Maple. Time used: 0.031 (sec). Leaf size: 38
ode:=sin(diff(y(x),x)) = x+y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\sin \left (1\right )-x \\ y &= \sin \left (-1+\operatorname {RootOf}\left (-x +\operatorname {Si}\left (\textit {\_Z} \right ) \sin \left (1\right )+\operatorname {Ci}\left (\textit {\_Z} \right ) \cos \left (1\right )+c_1 \right )\right )-x \\ \end{align*}
Mathematica. Time used: 0.106 (sec). Leaf size: 193
ode=Sin[D[y[x],x]]==y[x]+x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x-\frac {\arcsin (K[1]+y(x))}{\arcsin (K[1]+y(x))+1}dK[1]+\int _1^{y(x)}-\frac {\arcsin (x+K[2]) \int _1^x\left (\frac {\arcsin (K[1]+K[2])}{(\arcsin (K[1]+K[2])+1)^2 \sqrt {1-(K[1]+K[2])^2}}-\frac {1}{(\arcsin (K[1]+K[2])+1) \sqrt {1-(K[1]+K[2])^2}}\right )dK[1]+\int _1^x\left (\frac {\arcsin (K[1]+K[2])}{(\arcsin (K[1]+K[2])+1)^2 \sqrt {1-(K[1]+K[2])^2}}-\frac {1}{(\arcsin (K[1]+K[2])+1) \sqrt {1-(K[1]+K[2])^2}}\right )dK[1]-1}{\arcsin (x+K[2])+1}dK[2]=c_1,y(x)\right ] \]
Sympy. Time used: 2.155 (sec). Leaf size: 80
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x - y(x) + sin(Derivative(y(x), x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + x - \int \limits ^{- C_{2} - x} \frac {\operatorname {asin}{\left (r \right )}}{\operatorname {asin}{\left (r \right )} + 1 + \pi }\, dr - \pi \int \limits ^{- C_{2} - x} \frac {1}{\operatorname {asin}{\left (r \right )} + 1 + \pi }\, dr + \int \limits ^{- C_{2} - x} \frac {1}{\operatorname {asin}{\left (r \right )} + 1 + \pi }\, dr, \ y{\left (x \right )} = C_{1} + x - \int \limits ^{- C_{2} - x} \frac {\operatorname {asin}{\left (r \right )}}{\operatorname {asin}{\left (r \right )} - 1}\, dr - \int \limits ^{- C_{2} - x} \frac {1}{\operatorname {asin}{\left (r \right )} - 1}\, dr\right ] \]