34.4.5 problem 19 (f)

Internal problem ID [7932]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 6. Equations of first order and first degree (Linear equations). Supplemetary problems. Page 39
Problem number : 19 (f)
Date solved : Tuesday, September 30, 2025 at 05:10:16 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Bernoulli]

\begin{align*} y^{\prime }+y&=y^{2} {\mathrm e}^{x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=diff(y(x),x)+y(x) = y(x)^2*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-x}}{-x +c_1} \]
Mathematica. Time used: 0.134 (sec). Leaf size: 25
ode=D[y[x],x]+y[x]==y[x]^2*Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {e^{-x}}{x-c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.130 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2*exp(x) + y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {e^{- x}}{C_{1} - x} \]