34.2.1 problem 24

Internal problem ID [7866]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 4. Equations of first order and first degree (Variable separable). Supplemetary problems. Page 22
Problem number : 24
Date solved : Tuesday, September 30, 2025 at 05:07:12 PM
CAS classification : [_separable]

\begin{align*} 4 y+x y^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 9
ode:=4*y(x)+x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1}{x^{4}} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 16
ode=4*y[x]+x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{x^4}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.063 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x^{4}} \]