33.3.7 problem Problem 12.7

Internal problem ID [7820]
Book : Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section : Chapter 12. VARIATION OF PARAMETERS. page 104
Problem number : Problem 12.7
Date solved : Tuesday, September 30, 2025 at 05:05:57 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+\frac {4 y}{x}&=x^{4} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=diff(y(x),x)+4*y(x)/x = x^4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{9}+9 c_1}{9 x^{4}} \]
Mathematica. Time used: 0.017 (sec). Leaf size: 19
ode=D[y[x],x]+(4/x)*y[x]==x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^5}{9}+\frac {c_1}{x^4} \end{align*}
Sympy. Time used: 0.109 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 + Derivative(y(x), x) + 4*y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {x^{9}}{9}}{x^{4}} \]