32.2.35 problem 36

Internal problem ID [7752]
Book : Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY. 2001
Section : Program 24. First order differential equations. Further problems 24. page 1068
Problem number : 36
Date solved : Tuesday, September 30, 2025 at 05:04:39 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&={\mathrm e}^{3 x -2 y} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.089 (sec). Leaf size: 20
ode:=diff(y(x),x) = exp(3*x-2*y(x)); 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -\frac {\ln \left (3\right )}{2}+\frac {\ln \left (1+2 \,{\mathrm e}^{3 x}\right )}{2} \]
Mathematica. Time used: 0.634 (sec). Leaf size: 23
ode=D[y[x],x]==Exp[3*x-2*y[x]]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \log \left (\frac {1}{3} \left (2 e^{3 x}+1\right )\right ) \end{align*}
Sympy. Time used: 0.287 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(3*x - 2*y(x)) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\log {\left (6 e^{3 x} + 3 \right )}}{2} - \log {\left (3 \right )} \]