Internal
problem
ID
[7569]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Review
problems.
page
79
Problem
number
:
35
Date
solved
:
Tuesday, September 30, 2025 at 04:53:16 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=2*y(x)^2+4*x^2-x*y(x)*diff(y(x),x) = 0; ic:=[y(1) = -2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(2*y[x]^2+4*x^2)-x*y[x]*D[y[x],x]==0; ic={y[1]==-2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2 - x*y(x)*Derivative(y(x), x) + 2*y(x)**2,0) ics = {y(1): -2} dsolve(ode,func=y(x),ics=ics)