Internal
problem
ID
[7533]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.6,
Substitutions
and
Transformations.
Exercises.
page
76
Problem
number
:
45
Date
solved
:
Tuesday, September 30, 2025 at 04:44:50 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(y(t),t) = -4*x(t)-y(t), diff(x(t),t) = 2*x(t)-y(t)]; dsolve(ode);
ode={D[y[t],t]==-4*x[t]-y[t],D[x[t],t]==2*x[t]-y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) + y(t) + Derivative(y(t), t),0),Eq(-3*x(t) + y(t) + Derivative(x(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)