Internal
problem
ID
[7531]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.6,
Substitutions
and
Transformations.
Exercises.
page
76
Problem
number
:
32
Date
solved
:
Tuesday, September 30, 2025 at 04:42:57 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=2*x-y(x)+4+(x-2*y(x)-2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x-y[x]+4)+(x-2*y[x]-2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x + (x - 2*y(x) - 2)*Derivative(y(x), x) - y(x) + 4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out