30.2.18 problem 18

Internal problem ID [7446]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.3, Linear equations. Exercises. page 54
Problem number : 18
Date solved : Tuesday, September 30, 2025 at 04:35:37 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+4 y-{\mathrm e}^{-x}&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&={\frac {4}{3}} \\ \end{align*}
Maple. Time used: 0.027 (sec). Leaf size: 15
ode:=diff(y(x),x)+4*y(x)-exp(-x) = 0; 
ic:=[y(0) = 4/3]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-x}}{3}+{\mathrm e}^{-4 x} \]
Mathematica. Time used: 0.034 (sec). Leaf size: 21
ode=D[y[x],x]+4*y[x]-Exp[-x]==0; 
ic={y[0]==4/3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{3} e^{-4 x} \left (e^{3 x}+3\right ) \end{align*}
Sympy. Time used: 0.090 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + Derivative(y(x), x) - exp(-x),0) 
ics = {y(0): 4/3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (\frac {1}{3} + e^{- 3 x}\right ) e^{- x} \]