Internal
problem
ID
[7446]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.3,
Linear
equations.
Exercises.
page
54
Problem
number
:
18
Date
solved
:
Tuesday, September 30, 2025 at 04:35:37 PM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=diff(y(x),x)+4*y(x)-exp(-x) = 0; ic:=[y(0) = 4/3]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]+4*y[x]-Exp[-x]==0; ic={y[0]==4/3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) + Derivative(y(x), x) - exp(-x),0) ics = {y(0): 4/3} dsolve(ode,func=y(x),ics=ics)