30.2.10 problem 10

Internal problem ID [7438]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.3, Linear equations. Exercises. page 54
Problem number : 10
Date solved : Tuesday, September 30, 2025 at 04:35:21 PM
CAS classification : [_linear]

\begin{align*} x y^{\prime }+2 y&=\frac {1}{x^{3}} \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 13
ode:=x*diff(y(x),x)+2*y(x) = 1/x^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 x -1}{x^{3}} \]
Mathematica. Time used: 0.018 (sec). Leaf size: 15
ode=x*D[y[x],x]+2*y[x]==1/x^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {-1+c_1 x}{x^3} \end{align*}
Sympy. Time used: 0.104 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + 2*y(x) - 1/x**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} x - 1}{x^{3}} \]