30.1.16 problem 16

Internal problem ID [7406]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.2, Separable Equations. Exercises. page 46
Problem number : 16
Date solved : Tuesday, September 30, 2025 at 04:31:24 PM
CAS classification : [_separable]

\begin{align*} \frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right )&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 13
ode:=1/y(x)*diff(y(x),x)+y(x)*exp(cos(x))*sin(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{-{\mathrm e}^{\cos \left (x \right )}+c_1} \]
Mathematica. Time used: 0.183 (sec). Leaf size: 21
ode=1/y[x]*D[y[x],x]+y[x]*Exp[Cos[x]]*Sin[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{e^{\cos (x)}+c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.177 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*exp(cos(x))*sin(x) + Derivative(y(x), x)/y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {1}{C_{1} + e^{\cos {\left (x \right )}}} \]