29.5.14 problem 25

Internal problem ID [7283]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414
Problem number : 25
Date solved : Tuesday, September 30, 2025 at 04:27:46 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x)-6*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{2 x}+c_3 \,{\mathrm e}^{-3 x} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 30
ode=D[y[x],{x,3}]+D[y[x],{x,2}]-6*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{3} c_1 e^{-3 x}+\frac {1}{2} c_2 e^{2 x}+c_3 \end{align*}
Sympy. Time used: 0.094 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*Derivative(y(x), x) + Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- 3 x} + C_{3} e^{2 x} \]