26.5.17 problem Exercise 11.18, page 97

Internal problem ID [6990]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations
Problem number : Exercise 11.18, page 97
Date solved : Tuesday, September 30, 2025 at 04:07:52 PM
CAS classification : [[_homogeneous, `class D`], _rational, _Bernoulli]

\begin{align*} x y^{\prime }+x y^{2}-y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=x*diff(y(x),x)+x*y(x)^2-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 x}{x^{2}+2 c_1} \]
Mathematica. Time used: 0.098 (sec). Leaf size: 23
ode=x*D[y[x],x]+x*y[x]^2-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2 x}{x^2+2 c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.111 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)**2 + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {2 x}{C_{1} + x^{2}} \]