Internal
problem
ID
[6944]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
9
Problem
number
:
Exact
Differential
equations.
Exercise
9.15,
page
79
Date
solved
:
Tuesday, September 30, 2025 at 04:07:07 PM
CAS
classification
:
[_exact, _Bernoulli]
With initial conditions
ode:=exp(x)*(y(x)^3+x*y(x)^3+1)+3*y(x)^2*(x*exp(x)-6)*diff(y(x),x) = 0; ic:=[y(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=Exp[x]*(y[x]^3+x*y[x]^3+1)+3*y[x]^2*(x*Exp[x]-6)*D[y[x],x]==0; ic=y[0]==1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x*exp(x) - 18)*y(x)**2*Derivative(y(x), x) + (x*y(x)**3 + y(x)**3 + 1)*exp(x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)