25.1.3 problem 1.3

Internal problem ID [6836]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 2
Problem number : 1.3
Date solved : Tuesday, September 30, 2025 at 03:53:20 PM
CAS classification : [_separable]

\begin{align*} x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2}&=0 \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 54
ode:=x*y(x)*(x^2+1)*diff(y(x),x)-1-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {\left (x^{2}+1\right ) \left (c_1 \,x^{2}-1\right )}}{x^{2}+1} \\ y &= -\frac {\sqrt {\left (x^{2}+1\right ) \left (c_1 \,x^{2}-1\right )}}{x^{2}+1} \\ \end{align*}
Mathematica. Time used: 3.952 (sec). Leaf size: 145
ode=x*y[x]*(1+x^2)*D[y[x],x]-(1+y[x]^2)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt {-1+\exp \left (2 \left (\int _1^x\frac {1}{K[1]^3+K[1]}dK[1]+c_1\right )\right )}\\ y(x)&\to \sqrt {-1+\exp \left (2 \left (\int _1^x\frac {1}{K[1]^3+K[1]}dK[1]+c_1\right )\right )}\\ y(x)&\to -i\\ y(x)&\to i\\ y(x)&\to -\sqrt {\exp \left (2 \int _1^x\frac {1}{K[1]^3+K[1]}dK[1]\right )-1}\\ y(x)&\to \sqrt {\exp \left (2 \int _1^x\frac {1}{K[1]^3+K[1]}dK[1]\right )-1} \end{align*}
Sympy. Time used: 0.540 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x**2 + 1)*y(x)*Derivative(y(x), x) - y(x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt {\frac {C_{1} x^{2} - x^{2} - 1}{x^{2} + 1}}, \ y{\left (x \right )} = - \sqrt {\frac {C_{1} x^{2} - x^{2} - 1}{x^{2} + 1}}\right ] \]