Internal
problem
ID
[6716]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
107
Date
solved
:
Friday, October 03, 2025 at 02:09:48 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=-2*(x^2+4)*y(x)+x*(x^2+8)*diff(y(x),x)-4*x^2*diff(diff(y(x),x),x)+x^3*diff(diff(diff(y(x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*(4 + x^2)*y[x] + x*(8 + x^2)*D[y[x],x] - 4*x^2*D[y[x],{x,2}] + x^3*D[y[x],{x,3}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 4*x**2*Derivative(y(x), (x, 2)) + x*(x**2 + 8)*Derivative(y(x), x) + (-2*x**2 - 8)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*Derivative(y(x), (x, 3)) + 2*x**2*y