Internal
problem
ID
[6665]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
5.
THE
EQUATION
IS
LINEAR
AND
OF
ORDER
GREATER
THAN
TWO,
page
410
Problem
number
:
56
Date
solved
:
Tuesday, September 30, 2025 at 03:50:38 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=-8*y(x)+12*diff(y(x),x)-6*diff(diff(y(x),x),x)+diff(diff(diff(y(x),x),x),x) = exp(2*x)*x^2; dsolve(ode,y(x), singsol=all);
ode=-8*y[x] + 12*D[y[x],x] - 6*D[y[x],{x,2}] + D[y[x],{x,3}] == E^(2*x)*x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*exp(2*x) - 8*y(x) + 12*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)