23.5.24 problem 24

Internal problem ID [6633]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 24
Date solved : Tuesday, September 30, 2025 at 03:50:24 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 32
ode:=diff(y(x),x)-diff(diff(y(x),x),x)+diff(diff(diff(y(x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+c_3 \,{\mathrm e}^{\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]
Mathematica. Time used: 0.241 (sec). Leaf size: 75
ode=D[y[x],x] - D[y[x],{x,2}] + D[y[x],{x,3}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (c_1-\sqrt {3} c_2\right ) e^{x/2} \cos \left (\frac {\sqrt {3} x}{2}\right )+\frac {1}{2} \left (\sqrt {3} c_1+c_2\right ) e^{x/2} \sin \left (\frac {\sqrt {3} x}{2}\right )+c_3 \end{align*}
Sympy. Time used: 0.083 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \left (C_{2} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{3} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{\frac {x}{2}} \]