23.5.15 problem 15

Internal problem ID [6624]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 5. THE EQUATION IS LINEAR AND OF ORDER GREATER THAN TWO, page 410
Problem number : 15
Date solved : Tuesday, September 30, 2025 at 03:50:20 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=2*y(x)-3*diff(y(x),x)+diff(diff(diff(y(x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_3 x +c_2 \right )+c_1 \,{\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 25
ode=2*y[x] - 3*D[y[x],x] + D[y[x],{x,3}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-2 x}+e^x (c_3 x+c_2) \end{align*}
Sympy. Time used: 0.106 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - 3*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- 2 x} + \left (C_{1} + C_{2} x\right ) e^{x} \]