23.4.264 problem 264

Internal problem ID [6566]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 264
Date solved : Tuesday, September 30, 2025 at 03:04:35 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} \left (\left (a -y\right ) \left (b -y\right )+\left (a -y\right ) \left (c -y\right )+\left (b -y\right ) \left (c -y\right )\right ) {y^{\prime }}^{2}+2 \left (a -y\right ) \left (b -y\right ) \left (c -y\right ) y^{\prime \prime }&=\operatorname {a3} \left (a -y\right )^{2} \left (b -y\right )^{2}+2 \operatorname {a2} \left (a -y\right )^{2} \left (c -y\right )^{2}+\operatorname {a1} \left (b -y\right )^{2} \left (c -y\right )^{2}+\operatorname {a0} \left (a -y\right )^{2} \left (b -y\right )^{2} \left (c -y\right )^{2} \end{align*}
Maple. Time used: 0.064 (sec). Leaf size: 357
ode:=((b-y(x))*(a-y(x))+(a-y(x))*(c-y(x))+(b-y(x))*(c-y(x)))*diff(y(x),x)^2+2*(a-y(x))*(b-y(x))*(c-y(x))*diff(diff(y(x),x),x) = a3*(a-y(x))^2*(b-y(x))^2+2*a2*(a-y(x))^2*(c-y(x))^2+a1*(b-y(x))^2*(c-y(x))^2+a0*(a-y(x))^2*(b-y(x))^2*(c-y(x))^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {1}{\sqrt {-\operatorname {a0} \,\textit {\_a}^{4}+\textit {\_a}^{3} a \operatorname {a0} +\textit {\_a}^{3} \operatorname {a0} b +\textit {\_a}^{3} \operatorname {a0} c -\textit {\_a}^{2} a \operatorname {a0} b -\textit {\_a}^{2} a \operatorname {a0} c -\textit {\_a}^{2} \operatorname {a0} b c +\textit {\_a} a \operatorname {a0} b c +c_1 \,\textit {\_a}^{3}-c_1 \,\textit {\_a}^{2} a -c_1 \,\textit {\_a}^{2} b -c_1 \,\textit {\_a}^{2} c +c_1 \textit {\_a} a b +c_1 \textit {\_a} a c +c_1 \textit {\_a} b c -c_1 a b c +\textit {\_a}^{2} \operatorname {a1} +2 \textit {\_a}^{2} \operatorname {a2} +\textit {\_a}^{2} \operatorname {a3} -2 \textit {\_a} a \operatorname {a2} -\textit {\_a} a \operatorname {a3} -\textit {\_a} \operatorname {a1} b -\textit {\_a} \operatorname {a1} c -2 \textit {\_a} \operatorname {a2} c -\textit {\_a} \operatorname {a3} b +2 a \operatorname {a2} c +a \operatorname {a3} b +b c \operatorname {a1}}}d \textit {\_a} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {-\operatorname {a0} \,\textit {\_a}^{4}+\textit {\_a}^{3} a \operatorname {a0} +\textit {\_a}^{3} \operatorname {a0} b +\textit {\_a}^{3} \operatorname {a0} c -\textit {\_a}^{2} a \operatorname {a0} b -\textit {\_a}^{2} a \operatorname {a0} c -\textit {\_a}^{2} \operatorname {a0} b c +\textit {\_a} a \operatorname {a0} b c +c_1 \,\textit {\_a}^{3}-c_1 \,\textit {\_a}^{2} a -c_1 \,\textit {\_a}^{2} b -c_1 \,\textit {\_a}^{2} c +c_1 \textit {\_a} a b +c_1 \textit {\_a} a c +c_1 \textit {\_a} b c -c_1 a b c +\textit {\_a}^{2} \operatorname {a1} +2 \textit {\_a}^{2} \operatorname {a2} +\textit {\_a}^{2} \operatorname {a3} -2 \textit {\_a} a \operatorname {a2} -\textit {\_a} a \operatorname {a3} -\textit {\_a} \operatorname {a1} b -\textit {\_a} \operatorname {a1} c -2 \textit {\_a} \operatorname {a2} c -\textit {\_a} \operatorname {a3} b +2 a \operatorname {a2} c +a \operatorname {a3} b +b c \operatorname {a1}}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 30.682 (sec). Leaf size: 10537
ode=((a - y[x])*(b - y[x]) + (a - y[x])*(c - y[x]) + (b - y[x])*(c - y[x]))*D[y[x],x]^2 + 2*(a - y[x])*(b - y[x])*(c - y[x])*D[y[x],{x,2}] == a3*(a - y[x])^2*(b - y[x])^2 + 2*a2*(a - y[x])^2*(c - y[x])^2 + a1*(b - y[x])^2*(c - y[x])^2 + a0*(a - y[x])^2*(b - y[x])^2*(c - y[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
a0 = symbols("a0") 
a1 = symbols("a1") 
a2 = symbols("a2") 
a3 = symbols("a3") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-a0*(a - y(x))**2*(b - y(x))**2*(c - y(x))**2 - a1*(b - y(x))**2*(c - y(x))**2 - 2*a2*(a - y(x))**2*(c - y(x))**2 - a3*(a - y(x))**2*(b - y(x))**2 + (2*a - 2*y(x))*(b - y(x))*(c - y(x))*Derivative(y(x), (x, 2)) + ((a - y(x))*(b - y(x)) + (a - y(x))*(c - y(x)) + (b - y(x))*(c - y(x)))*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt((a**2*a0*b**2*c**2 - 2*a**2*a0*b**2*c*y(x) + a**2*a0*b**2*