Internal
problem
ID
[6530]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
228
Date
solved
:
Friday, October 03, 2025 at 02:09:26 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]
ode:=2*x^2*y(x)*diff(diff(y(x),x),x) = -4*y(x)^2+2*x*y(x)*diff(y(x),x)+x^2*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=2*x^2*y[x]*D[y[x],{x,2}] == -4*y[x]^2 + 2*x*y[x]*D[y[x],x] + x^2*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*y(x)*Derivative(y(x), (x, 2)) - x**2*Derivative(y(x), x)**2 - 2*x*y(x)*Derivative(y(x), x) + 4*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((2*x**2*Derivative(y(x), (x, 2)) + 5