Internal
problem
ID
[6524]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
222
Date
solved
:
Friday, October 03, 2025 at 02:09:24 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]
ode:=c*y(x)^2+b*x*y(x)*diff(y(x),x)+a*x^2*diff(y(x),x)^2+x^2*y(x)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=c*y[x]^2 + b*x*y[x]*D[y[x],x] + a*x^2*D[y[x],x]^2 + x^2*y[x]*D[y[x],{x,2}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(a*x**2*Derivative(y(x), x)**2 + b*x*y(x)*Derivative(y(x), x) + c*y(x)**2 + x**2*y(x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-b*y(x) + sqrt((-4*a*c*y(x) - 4*a*x**2*De