23.4.214 problem 214

Internal problem ID [6516]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 214
Date solved : Tuesday, September 30, 2025 at 03:02:34 PM
CAS classification : [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} 4 y y^{\prime }-4 x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 68
ode:=4*y(x)*diff(y(x),x)-4*x*diff(y(x),x)^2+x*y(x)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {x}{\left (-3 c_2 \,x^{3}+c_1 \right )^{{1}/{3}}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) x}{2 \left (-3 c_2 \,x^{3}+c_1 \right )^{{1}/{3}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) x}{2 \left (-3 c_2 \,x^{3}+c_1 \right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 0.427 (sec). Leaf size: 26
ode=4*y[x]*D[y[x],x] - 4*x*D[y[x],x]^2 + x*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 x}{\sqrt [3]{1+c_1 x^3}}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x)**2 + 4*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((x**2*Derivative(y(x), (x, 2)) + y(x