Internal
problem
ID
[6509]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
207
Date
solved
:
Tuesday, September 30, 2025 at 03:02:30 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*y(x)*diff(diff(y(x),x),x) = b^2*x*y(x)^3+a*y(x)*diff(y(x),x)+x*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=x*y[x]*D[y[x],{x,2}] == b^2*x*y[x]^3 + a*y[x]*D[y[x],x] + x*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-a*y(x)*Derivative(y(x), x) - b**2*x*y(x)**3 + x*y(x)*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*y(x) + sqrt((a**2*y(x) - 4*b**2*x**2*y