23.4.203 problem 203

Internal problem ID [6505]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 203
Date solved : Tuesday, September 30, 2025 at 03:02:26 PM
CAS classification : [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} 2 y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 48
ode:=2*y(x)*diff(y(x),x)+x*diff(y(x),x)^2+x*y(x)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {\sqrt {2}\, \sqrt {x \left (c_2 x -c_1 \right )}}{x} \\ y &= -\frac {\sqrt {2}\, \sqrt {x \left (c_2 x -c_1 \right )}}{x} \\ \end{align*}
Mathematica. Time used: 0.197 (sec). Leaf size: 24
ode=2*y[x]*D[y[x],x] + x*D[y[x],x]^2 + x*y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 \sqrt {2-c_1 x}}{\sqrt {x}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x)**2 + 2*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((-x**2*Derivative(y(x), (x, 2)) + y(