Internal
problem
ID
[6495]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
193
Date
solved
:
Tuesday, September 30, 2025 at 03:02:04 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]
ode:=4*y(x)*diff(diff(y(x),x),x) = 12*y(x)^2+3*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=4*y[x]*D[y[x],{x,2}] == 12*y[x]^2 + 3*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-12*y(x)**2 + 4*y(x)*Derivative(y(x), (x, 2)) - 3*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -2*sqrt(3)*sqrt((-3*y(x) + Derivative(y(x), (x, 2)))*y(x))/3 + D