Internal
problem
ID
[6461]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
4.
THE
NONLINEAR
EQUATION
OF
SECOND
ORDER,
page
380
Problem
number
:
159
Date
solved
:
Tuesday, September 30, 2025 at 03:01:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=g(x)*y(x)^2+f(x)*y(x)*diff(y(x),x)+a*diff(y(x),x)^2+y(x)*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=g[x]*y[x]^2 + f[x]*y[x]*D[y[x],x] + a*D[y[x],x]^2 + y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a*Derivative(y(x), x)**2 + f(x)*y(x)*Derivative(y(x), x) + g(x)*y(x)**2 + y(x)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((-4*a*g(x)*y(x) - 4*a*Derivative(y(x