23.4.144 problem 144

Internal problem ID [6446]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 144
Date solved : Tuesday, September 30, 2025 at 02:56:56 PM
CAS classification : [NONE]

\begin{align*} y y^{\prime \prime }&=-f \left (x \right ) y^{3}+y^{4}-f \left (x \right ) y^{\prime }+{y^{\prime }}^{2}+y f^{\prime \prime }\left (x \right ) \end{align*}
Maple
ode:=y(x)*diff(diff(y(x),x),x) = -f(x)*y(x)^3+y(x)^4-f(x)*diff(y(x),x)+diff(y(x),x)^2+y(x)*diff(diff(f(x),x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica. Time used: 22.689 (sec). Leaf size: 225
ode=y[x]*D[y[x],{x,2}] == -(f[x]*y[x]^3) + y[x]^4 - f[x]*D[y[x],x] + D[y[x],x]^2 + y[x]*D[f[x],{x,2}]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\exp \left (c_2-\int _1^x\frac {y(K[3])^4-f(K[3]) y(K[3])^3+\left (c_1+\int _1^{K[3]}\frac {f(K[1]) \left (y(K[1])^3+y'(K[1])\right )-y(K[1]) \left (y(K[1])^3+f''(K[1])\right )}{y(K[1])^2}dK[1]\right ){}^2 y(K[3])^2+f''(K[3]) y(K[3])-f(K[3]) y'(K[3])}{y(K[3])^2 \left (c_1+\int _1^{K[3]}\frac {f(K[1]) \left (y(K[1])^3+y'(K[1])\right )-y(K[1]) \left (y(K[1])^3+f''(K[1])\right )}{y(K[1])^2}dK[1]\right )}dK[3]\right )}{\int _1^x\frac {f(K[1]) \left (y(K[1])^3+y'(K[1])\right )-y(K[1]) \left (y(K[1])^3+f''(K[1])\right )}{y(K[1])^2}dK[1]+c_1}\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(f(x)*y(x)**3 + f(x)*Derivative(y(x), x) - y(x)**4 - y(x)*Derivative(f(x), (x, 2)) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(f(x)**2 + 4*f(x)*y(x)**3 - 4*y(x)**4 - 4*y(x)*Derivative(f