23.4.136 problem 136

Internal problem ID [6438]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 136
Date solved : Friday, October 03, 2025 at 02:05:43 AM
CAS classification : [[_2nd_order, _reducible, _mu_xy]]

\begin{align*} y y^{\prime \prime }&=-x^{2} y^{2}+\ln \left (y\right ) y^{2}+{y^{\prime }}^{2} \end{align*}
Maple. Time used: 0.083 (sec). Leaf size: 22
ode:=y(x)*diff(diff(y(x),x),x) = -x^2*y(x)^2+ln(y(x))*y(x)^2+diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x^{2}+2-\frac {c_2 \,{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x} c_1}{2}} \]
Mathematica. Time used: 0.389 (sec). Leaf size: 30
ode=y[x]*D[y[x],{x,2}] == -(x^2*y[x]^2) + Log[y[x]]*y[x]^2 + D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{x^2-\frac {c_1 e^x}{2}-c_2 e^{-x}+2} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*y(x)**2 - y(x)**2*log(y(x)) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : cannot determine truth value of Relational: _X0**2 < 2