23.4.132 problem 132

Internal problem ID [6434]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 132
Date solved : Tuesday, September 30, 2025 at 02:56:47 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y y^{\prime \prime }&=\operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3}+\operatorname {a4} y^{4}+{y^{\prime }}^{2} \end{align*}
Maple. Time used: 0.014 (sec). Leaf size: 99
ode:=y(x)*diff(diff(y(x),x),x) = a0+a1*y(x)+a2*y(x)^2+a3*y(x)^3+a4*y(x)^4+diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {1}{\sqrt {\operatorname {a4} \,\textit {\_a}^{4}+2 \ln \left (\textit {\_a} \right ) \textit {\_a}^{2} \operatorname {a2} +2 \operatorname {a3} \,\textit {\_a}^{3}+c_1 \,\textit {\_a}^{2}-2 \operatorname {a1} \textit {\_a} -\operatorname {a0}}}d \textit {\_a} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {\operatorname {a4} \,\textit {\_a}^{4}+2 \ln \left (\textit {\_a} \right ) \textit {\_a}^{2} \operatorname {a2} +2 \operatorname {a3} \,\textit {\_a}^{3}+c_1 \,\textit {\_a}^{2}-2 \operatorname {a1} \textit {\_a} -\operatorname {a0}}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 2.383 (sec). Leaf size: 377
ode=y[x]*D[y[x],{x,2}] == a0 + a1*y[x] + a2*y[x]^2 + a3*y[x]^3 + a4*y[x]^4 + D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {1}{\sqrt {\text {a4} K[1]^4+2 \text {a3} K[1]^3+c_1 K[1]^2+2 \text {a2} \log (K[1]) K[1]^2-2 \text {a1} K[1]-\text {a0}}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {\text {a4} K[2]^4+2 \text {a3} K[2]^3+c_1 K[2]^2+2 \text {a2} \log (K[2]) K[2]^2-2 \text {a1} K[2]-\text {a0}}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {1}{\sqrt {\text {a4} K[1]^4+2 \text {a3} K[1]^3-c_1 K[1]^2+2 \text {a2} \log (K[1]) K[1]^2-2 \text {a1} K[1]-\text {a0}}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {1}{\sqrt {\text {a4} K[1]^4+2 \text {a3} K[1]^3+c_1 K[1]^2+2 \text {a2} \log (K[1]) K[1]^2-2 \text {a1} K[1]-\text {a0}}}dK[1]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {\text {a4} K[2]^4+2 \text {a3} K[2]^3-c_1 K[2]^2+2 \text {a2} \log (K[2]) K[2]^2-2 \text {a1} K[2]-\text {a0}}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {\text {a4} K[2]^4+2 \text {a3} K[2]^3+c_1 K[2]^2+2 \text {a2} \log (K[2]) K[2]^2-2 \text {a1} K[2]-\text {a0}}}dK[2]\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a0 = symbols("a0") 
a1 = symbols("a1") 
a2 = symbols("a2") 
a3 = symbols("a3") 
a4 = symbols("a4") 
y = Function("y") 
ode = Eq(-a0 - a1*y(x) - a2*y(x)**2 - a3*y(x)**3 - a4*y(x)**4 + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-a0 - a1*y(x) - a2*y(x)**2 - a3*y(x)**3 - a4*y(x)**4 + y(x