23.4.129 problem 129

Internal problem ID [6431]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 129
Date solved : Tuesday, September 30, 2025 at 02:56:41 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{2}+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 60
ode:=y(x)^2+diff(y(x),x)^2+y(x)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= 2^{{1}/{4}} \sqrt {c_2 \cos \left (\sqrt {2}\, x \right )-c_1 \sin \left (\sqrt {2}\, x \right )} \\ y &= -2^{{1}/{4}} \sqrt {c_2 \cos \left (\sqrt {2}\, x \right )-c_1 \sin \left (\sqrt {2}\, x \right )} \\ \end{align*}
Mathematica. Time used: 0.166 (sec). Leaf size: 40
ode=y[x]^2 + D[y[x],x]^2 + y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 \sqrt {\cos \left (\sqrt {2} (x-c_1)\right )}\\ y(x)&\to c_2 \sqrt {\text {Interval}[\{-1,1\}]} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)**2 + y(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-(y(x) + Derivative(y(x), (x, 2)))*y(x)) + Derivative(y(x)