23.4.84 problem 84

Internal problem ID [6386]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 4. THE NONLINEAR EQUATION OF SECOND ORDER, page 380
Problem number : 84
Date solved : Tuesday, September 30, 2025 at 02:54:57 PM
CAS classification : [[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\begin{align*} x {y^{\prime }}^{2}+x y^{\prime \prime }&=y^{\prime } \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 19
ode:=x*diff(y(x),x)^2+x*diff(diff(y(x),x),x) = diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\ln \left (2\right )+\ln \left (c_1 \,x^{2}+2 c_2 \right ) \]
Mathematica. Time used: 0.181 (sec). Leaf size: 17
ode=x*D[y[x],x]^2 + x*D[y[x],{x,2}] == D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \log \left (x^2+2 c_1\right )+c_2 \end{align*}
Sympy. Time used: 0.585 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \log {\left (C_{2} + x^{2} \right )} \]