Internal
problem
ID
[6231]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
523
Date
solved
:
Friday, October 03, 2025 at 01:57:09 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=a0*a1*(-k+x)*y(x)+(1-a0+a1+a0*a2-a3+(a2+a3)*x+(1+a0+a1)*x^2)*diff(y(x),x)+(1-x)*(a-x)*x*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=a0*a1*(-k + x)*y[x] + (1 - a0 + a1 + a0*a2 - a3 + (a2 + a3)*x + (1 + a0 + a1)*x^2)*D[y[x],x] + (1 - x)*(a - x)*x*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") a0 = symbols("a0") a1 = symbols("a1") a2 = symbols("a2") a3 = symbols("a3") k = symbols("k") y = Function("y") ode = Eq(a0*a1*(-k + x)*y(x) + x*(1 - x)*(a - x)*Derivative(y(x), (x, 2)) + (a0*a2 - a0 + a1 - a3 + x**2*(a0 + a1 + 1) + x*(a2 + a3) + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None