23.3.512 problem 518

Internal problem ID [6226]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 518
Date solved : Friday, October 03, 2025 at 01:57:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.034 (sec). Leaf size: 240
ode:=(b2*x+a2)*y(x)+x*(b1*x+a1)*diff(y(x),x)+(1-x)*x^2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{-\frac {\operatorname {a1}}{2}} \sqrt {x}\, \left (c_1 \,x^{\frac {\sqrt {\operatorname {a1}^{2}-2 \operatorname {a1} -4 \operatorname {a2} +1}}{2}} \operatorname {hypergeom}\left (\left [-\frac {\operatorname {b1}}{2}-\frac {\operatorname {a1}}{2}+\frac {\sqrt {\operatorname {a1}^{2}-2 \operatorname {a1} -4 \operatorname {a2} +1}}{2}+\frac {\sqrt {\operatorname {b1}^{2}+2 \operatorname {b1} +4 \operatorname {b2} +1}}{2}, -\frac {\operatorname {b1}}{2}-\frac {\operatorname {a1}}{2}+\frac {\sqrt {\operatorname {a1}^{2}-2 \operatorname {a1} -4 \operatorname {a2} +1}}{2}-\frac {\sqrt {\operatorname {b1}^{2}+2 \operatorname {b1} +4 \operatorname {b2} +1}}{2}\right ], \left [1+\sqrt {\operatorname {a1}^{2}-2 \operatorname {a1} -4 \operatorname {a2} +1}\right ], x\right )+c_2 \,x^{-\frac {\sqrt {\operatorname {a1}^{2}-2 \operatorname {a1} -4 \operatorname {a2} +1}}{2}} \operatorname {hypergeom}\left (\left [-\frac {\operatorname {b1}}{2}-\frac {\operatorname {a1}}{2}-\frac {\sqrt {\operatorname {a1}^{2}-2 \operatorname {a1} -4 \operatorname {a2} +1}}{2}+\frac {\sqrt {\operatorname {b1}^{2}+2 \operatorname {b1} +4 \operatorname {b2} +1}}{2}, -\frac {\operatorname {b1}}{2}-\frac {\operatorname {a1}}{2}-\frac {\sqrt {\operatorname {a1}^{2}-2 \operatorname {a1} -4 \operatorname {a2} +1}}{2}-\frac {\sqrt {\operatorname {b1}^{2}+2 \operatorname {b1} +4 \operatorname {b2} +1}}{2}\right ], \left [1-\sqrt {\operatorname {a1}^{2}-2 \operatorname {a1} -4 \operatorname {a2} +1}\right ], x\right )\right ) \]
Mathematica. Time used: 0.299 (sec). Leaf size: 317
ode=(a2 + b2*x)*y[x] + x*(a1 + b1*x)*D[y[x],x] + (1 - x)*x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to i^{-\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}-\text {a1}+1} x^{\frac {1}{2} \left (-\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}-\text {a1}+1\right )} \left (c_2 i^{2 \sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}} x^{\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} \left (-\text {a1}-\text {b1}+\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}-\sqrt {\text {b1}^2+2 \text {b1}+4 \text {b2}+1}\right ),\frac {1}{2} \left (-\text {a1}-\text {b1}+\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}+\sqrt {\text {b1}^2+2 \text {b1}+4 \text {b2}+1}\right ),\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}+1,x\right )+c_1 \operatorname {Hypergeometric2F1}\left (\frac {1}{2} \left (-\text {a1}-\text {b1}-\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}-\sqrt {\text {b1}^2+2 \text {b1}+4 \text {b2}+1}\right ),\frac {1}{2} \left (-\text {a1}-\text {b1}-\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1}+\sqrt {\text {b1}^2+2 \text {b1}+4 \text {b2}+1}\right ),1-\sqrt {\text {a1}^2-2 \text {a1}-4 \text {a2}+1},x\right )\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a1 = symbols("a1") 
a2 = symbols("a2") 
b1 = symbols("b1") 
b2 = symbols("b2") 
y = Function("y") 
ode = Eq(x**2*(1 - x)*Derivative(y(x), (x, 2)) + x*(a1 + b1*x)*Derivative(y(x), x) + (a2 + b2*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None