23.3.509 problem 515

Internal problem ID [6223]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 515
Date solved : Tuesday, September 30, 2025 at 02:36:40 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} 2 \left (1+x \right ) y+2 \left (2-x \right ) x y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=2*(1+x)*y(x)+2*(2-x)*x*diff(y(x),x)+(1-x)*x^2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 +c_2 \left (-1+x \right )^{3}}{x^{2}} \]
Mathematica. Time used: 0.02 (sec). Leaf size: 29
ode=2*(1 + x)*y[x] + 2*(2 - x)*x*D[y[x],x] + (1 - x)*x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 x \left (x^2-3 x+3\right )+3 c_1}{3 x^2} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(1 - x)*Derivative(y(x), (x, 2)) + x*(4 - 2*x)*Derivative(y(x), x) + (2*x + 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False