Internal
problem
ID
[6200]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
492
Date
solved
:
Tuesday, September 30, 2025 at 02:36:13 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(c*x+b)*y(x)+a*x^2*diff(y(x),x)+x^3*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(b + c*x)*y[x] + a*x^2*D[y[x],x] + x^3*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(a*x**2*Derivative(y(x), x) + x**3*Derivative(y(x), (x, 2)) + (b + c*x)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : invalid input: 1 - a