Internal
problem
ID
[6196]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
488
Date
solved
:
Friday, October 03, 2025 at 01:56:51 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(b2*x+a2)*y(x)+a1*x*diff(y(x),x)+x^3*diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a2 + b2*x)*y[x] + a1*x*D[y[x],x] + x^3*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a1 = symbols("a1") a2 = symbols("a2") b2 = symbols("b2") y = Function("y") ode = Eq(a1*x*Derivative(y(x), x) + x**3*Derivative(y(x), (x, 2)) + (a2 + b2*x)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a2*y(x) + x*(-b2*y(x) - x**2*Derivative(