23.3.451 problem 456

Internal problem ID [6165]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 456
Date solved : Tuesday, September 30, 2025 at 02:23:58 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 5 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=5*y(x)-8*x*diff(y(x),x)+4*x^2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {x}\, \left (c_1 \,x^{2}+c_2 \right ) \]
Mathematica. Time used: 0.007 (sec). Leaf size: 20
ode=5*y[x] - 8*x*D[y[x],x] + 4*x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt {x} \left (c_2 x^2+c_1\right ) \end{align*}
Sympy. Time used: 0.091 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) - 8*x*Derivative(y(x), x) + 5*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {x} \left (C_{1} + C_{2} x^{2}\right ) \]