23.3.398 problem 402

Internal problem ID [6112]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 402
Date solved : Tuesday, September 30, 2025 at 02:21:43 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} -y-3 x y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=-y(x)-3*x*diff(y(x),x)+(1-x)*x*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\ln \left (x \right ) c_1 x +c_2 x +c_1}{\left (-1+x \right )^{2}} \]
Mathematica. Time used: 0.039 (sec). Leaf size: 38
ode=-y[x] - 3*x*D[y[x],x] + (1 - x)*x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1 x-c_2 x \log (x)-c_2}{\sqrt {1-x} (x-1)^{3/2}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x)*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False