23.3.351 problem 354

Internal problem ID [6065]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 354
Date solved : Tuesday, September 30, 2025 at 02:20:51 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} -4 y+x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=-4*y(x)+x*diff(y(x),x)+(x^2+1)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = 2 c_2 \,x^{2}+c_1 \sinh \left (2 \,\operatorname {arcsinh}\left (x \right )\right )+c_2 \]
Mathematica. Time used: 0.015 (sec). Leaf size: 25
ode=-4*y[x] + x*D[y[x],x] + (1 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cosh (2 \text {arcsinh}(x))+i c_2 \sinh (2 \text {arcsinh}(x)) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) - 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False