23.3.345 problem 348

Internal problem ID [6059]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 348
Date solved : Tuesday, September 30, 2025 at 02:20:44 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 23
ode:=y(x)-x*diff(y(x),x)+(x^2+1)*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\sqrt {x^{2}+1}\, c_2 +x \left (c_2 \,\operatorname {arcsinh}\left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.055 (sec). Leaf size: 39
ode=y[x] - x*D[y[x],x] + (1 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 x \text {arctanh}\left (\frac {x}{\sqrt {x^2+1}}\right )-c_2 \sqrt {x^2+1}+c_1 x \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False