23.3.306 problem 308

Internal problem ID [6020]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 308
Date solved : Tuesday, September 30, 2025 at 02:20:00 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 13 y+5 x y^{\prime }+x^{2} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=13*y(x)+5*x*diff(y(x),x)+x^2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \sin \left (3 \ln \left (x \right )\right )+c_2 \cos \left (3 \ln \left (x \right )\right )}{x^{2}} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 26
ode=13*y[x] + 5*x*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 \cos (3 \log (x))+c_1 \sin (3 \log (x))}{x^2} \end{align*}
Sympy. Time used: 0.111 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 5*x*Derivative(y(x), x) + 13*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \sin {\left (3 \log {\left (x \right )} \right )} + C_{2} \cos {\left (3 \log {\left (x \right )} \right )}}{x^{2}} \]